Call for Abstract

4th International Conference on Advances in 3D Printing & Modelling, will be organized around the theme “Trembling the notion of what CAN AND CANNOT be developed in 3D Printing.”

Euro 3D Printing 2019 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Euro 3D Printing 2019

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

The year 2017 had been a super exciting year for the 3D printing industry, with plenty of new players appearing on the scene, as well as countless new collaborations and innovations. We’ve bundled their input for you in a list of trends we anticipate for 2018 & 2019.

 

  • Better Software, More Integration

  • Organic, Wearable Materials

  • Faster Speeds, Increased Productivity

  • Better and Cheaper Metal Printing

  • Mass Customization Goes Mainstream

Euro 3D Printing & Modelling  2019 | 3D Printing & Modelling Conferences | 3D Printing & Modelling Expo | 3D Printing & Modelling Meetings | Best 3D Printing & Modelling Conference | Top 3D Modelling & Printing Conference | European 3D Printing & Modelling Meetings | Euro 3D Printing Conferences.

The year 2017 saw 3D printing continue its march into every dimension of our lives. With new materials, new methods, new applications, new technologies,  the young field is revolutionizing prototyping and manufacturing, and changing the world of design, medicine, construction etc. Rapid prototyping is helping companies realise their ideas into products faster. 3D printed prototypes make all the difference when the need is to convey an idea properly or when it is necessary to ascertain a product/part’s functionality in the real-world before investing in expensive tooling.

Innovation in 3D Printing | 3D Modelling | 3D Printing 2019 | 3D Modelling & Printing 2019 | Advances in 3D Modelling & Printing | Amsterdam | Netherlands 

Recent developments in Additive Manufacturing have focused on building better, faster, larger and more capable machines and on extending the range of new materials. Researchers Achieve 4D Printing of Programmable Shape-Changing Structures.

  • 3D-Printed Patient-Specific Implants Can Improve Integration of Amputee Prosthetic Devices with Bone
  • 3D-Printed Polymer Stents Grow with Pediatric Patients and Biodegrade Over Time
  • New Dissolvable Metal Support Enables 3D Printing of Complex Metallic Structures
  • 3D Printing Creates Knee Model for Evaluating Patellar Disorders and Surgical Approaches
  • RolyPOLY - A Unique Flexible Shelter Produced by Robotic Winding of Carbon Fibers
  • Skylar Tibbits Appointed Editor-in-Chief of 3D Printing and Additive Manufacturing.
  • From Ballet Shoes to Human Tissue, Printing Ideas into 3-D Reality
 
3D Printing and Additive Manufacturing | Advances in 3D Printing & Modelling | 3D Printing Summit | 3D Modelling  Conference 2019 | 3D Modelling Expo | Meetings | Expo | Congress |Amsterdam | Netherlands

Advanced printers have been built that can extrude multiple materials, providing a level of speed and flexibility that was not present before. The printer reads the file and lays down successive layers of materials, such as plastics, resins, concrete, sand or metals, until the entire object is created. Currently, they have only been  used to create 3D models of a structural design, prototypes, and smaller non-structural elements such as landscaping bricks or decorative components. Extremely large 3D printers have already been built that can use concrete-like materials to fabricate a variety of large structural components and even entire buildings, such as emergency huts and residences. Raw materials tested include: Recycled plastic, Bioplastics, Concrete. Synthetic stone-like material made of sand and chemicals

  • Reduced materials usage
  • Increasing the ability to design a larger variety of customized homes and buildings
  • Savings  in construction waste
  • Reduction of production time by 50%-70%
  • Reduction of construction labor costs 
  • Lower costs for customized design.
  • Increasing rate of construction, faster and more accurate.
  • Recycling of unused construction components.
  • Health and safety risks.
  • Lower cost housing or to create designs which is not possible with traditional construction.
  • Changes in the type of skills and labor required.
  • Risks and errors in the digital model that could result in problems onsite that will need special handling or rework.
  • The printers are not necessarily faster than traditional construction. More time may be required for onsite component production
  • 3D Printing for Pressurised Concrete
  • Virtual and Rapid Prototyping Methods, Wind and Earthquake Simulations on a Five Storey Building
  • 3D Construction Printing
  • 3D printed buildings
  • 3D printed bridges
  • Extra-Terrestrial Printed Structure 

3D Printing in Construction Arena | Advances in 3D Printing & Modelling | 3D Printing Conferences 2019 | USA | Europe | Asia Pacific | Middle East | Amsterdam | Netherlands | Conference Series

3D Printing  or we can say “Additive manufacturing”  is now being used in a number of different industries all over the world, including aerospace developmentautomotive, military science . One of the most beneficial reasons to contemplate using additive manufacturing processes rather than conventional engineering is the ability to create electronic circuits in very small spaces. There’s a range of functional components which can also be easily created, including electronics. Additive manufacturing machines can produce conductor, resistor, dielectric and semiconductor inks which can be processed to create both active and inert components. Shielding, antennas and sensors are just some of the types of electronic components which can be created. Combining additive manufacturing in both the aerospace and electronics industries provides some very advantageous technology, including the ability to print directly onto the wing of unmanned aerial vehicles, creating a lighter and more streamlined design.

  • 3D-Printed Electronics:  Applications and Opportunities
  • 3D Printing for Prototyping in the Electronic Industry
  • 3D-Printed Electronics:  Hardware, Materials and Service Offerings
  • Potential for Revenue Generation by 3D-printed Electronics
  • Segmenting a Future 3D-printed Electronics Sector
  • Printed Electronics:  Emerging Specialist Firms
  • Ongoing R&D in 3D-Printed Electronics
  • 3D-Printed Metals, Dielectrics for the Electronics Industry
  • The Future of 3D-Printed Electronics is non-Proprietary Materials
  • Supply Chain Structure for the 3D-Printed Electronics Sector
  • Market Forecasts for 3D-Printed Electronics
  • 3d printing applications in electronics
  • 3d printing embedded electronics
  • optomec 3d printer

 

3D Printing in  Electronics Industry | 3D Printing in Automotive | 3D Printing in Aerospace Development | 3D Printing in Military Science | 3D Printing Congress | Meetings | 3D Printing Summit | Advances in 3D Printing & Modelling | Amsterdam | Netherlands

Wikipedia says that G-code (also RS-274), which has many variants, is the common name for the most widely used numerical control (NC) programming language. It is used mainly in computer-aided manufacturing to control automated machine tools.

G-code is a language in which people tell computerized machine tools how to make something. The "how" is defined by g-code instructions provided to a machine controller (industrial computer) that tells the motors where to move, how fast to move, and what path to follow. The two most common situations are that, within a machine tool such as a lathe or mill, a cutting tool is moved according to these instructions through a toolpath cutting away material to leave only the finished workpiece and/or, an unfinished workpiece is precisely positioned in any of up to 9 axis around the 3 dimensions relative to a toolpath and, either or both can move relative to each other.

  • How G-Code Works?
  • Changing a pallet
  • Rapid movement
  • A series of controlled feed moves, resulting in a workpiece cut, a bored hole, or a decorative profile shape
  • Controlling  feed movement, in an arc or a straight line
  • Setting tool information
  • What Is The Purpose Of CAM Software?

 

G-code in 3D Printing | Advances in 3D Printing & Modelling | Amsterdam | Netherlands

It says your prints are only as good as the software you’re using. 3D printing software serves many different purposes from 3D Modelling to sculpting to customizing. There has come a diverse range of applications and many come with perks like cloud database capabilities and many more. These provide users with various abilities ranging from modelling to rendering to conception and presenting to clients as well. 3D Softwares used here are the virtual sculpting tools, focusing on the concepts of  3D Modelling and 3D Printing. With the software, one can achieve a real  3D Printed model of desire shape and desire imagination and even a new world in design and manufacturing with parameters that are only just beginning to be explored.

3D Printing User-Friendly Software | 3D  Printing Advance Software | 3D Modelling Conferences 2019 |3D Printing Expo | Advances in 3D Printing & Modelling | 3D Printing Summit 2019 | USA | Europe | Amsterdam | Netherlands

 

3D Printing applications in medicine are revolutionizing day by day. It includes bioprinting, customized implants and prosthetics, medical models and medical devices that revolutionize healthcare and also overcoming many traditional medicines and methods. These 3D Printed models are playing a vital role in the teaching of healthcare, life sciences, medicines. Moreover, its application is expanding rapidly in this era. Some majors branches are listed below:

  • 3D Bioprinting
  • 3D Printing for Liver Tissue Engineering
  • 3D printing in Biomaterials
  • Clinical applications of 3D Printing in Orthopaedics
  • 3D printing in Radiation Oncology
  • 3D printing in dentistry
  • 3D printing ocular prosthesis
  • 3D printed eye model
  • 3D printed eyes
  • 3D Medtech Printing
  • Tissue and Organ Printing
  • 3D Printing in hearing aids
  • 3D printed prostheses
  • Virtual surgical planning 
  • Clinical applications of 3D Printing in Traumatology
  • Tissue engineering scaffold

 

3D Printing Conference | 3D Modelling Conference | Advances in 3D Printing Conference | 3D Modelling & Beyond | Amsterdam | Netherland

3D Modelling is being used all over the world in various industries like films, animation and gaming, interior designing, architecture and many more. They are also widely used in the medical industry for the interactive representations of anatomy. In 3D computer graphics, 3D modelling is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in 3D via specialized software.

A large market for 3D models (as well as 3D-related content, such as textures, scripts, etc.) still exists – either for individual models or large collections. Several online marketplaces for 3D content allow individual artists to sell content that they have created, including TurboSquid, CGStudio, Creative Market,  Sketchfab and CGTrader.

  • 3D models printed with a 3D printer
  • 2D images created via 3D rendering
  • 3D simulations of an object or building

3D Modelling | Advances in 3D Modelling and Printing 2019 | Amsterdam | Netherlands 

M&S is the use of a physical or logical representation of a given system to generate data and help determine decisions or make predictions about the system. Additive Manufacturing (AM) or 3D Printing (3DP) for exacting applications still faces a technical challenge. The expansion of 3DP  has created a need for simulation and data management tools. Numerous 3D techniques that have been developed to manufacture complex-shaped components along with more precision that will help to optimize the 3DP process in order to reduce production costs, improve performance & increase robustness/reliability by optimizing design i.e. it all requires is systematic modelling and simulation especially at the time of designing.   

 

Modelling and Simulation(M&S) techniques of 3D printing & AM  | 3D Printing Conference 2019 | 3D Modelling Congress 2019 | Amsterdam | Netherlands | Conference Series.

 

  • Simulation modelling
  • Process simulation 
  • Computational methods
  • Lightweight additively manufactured structures;
  • Integration of modelling with process design
  • Methods to control & minimize defects. 
  • Analyzing variation of properties, such as orientation, volume and print direction 

 

 

3D Printing gives us the ability to handle any level of complexity and also ensures pinpoint accuracy especially in industries like Jewellery, Entertainment, and Fashion where lies less scope of slip-up. For the world of fashion, 3D Printing is not a new concept and when it comes to fashion world it has to be astonishing, astounding, sensational, stunning and what not?                                            

With the help of 3D Printing, the world has come up with several techniques of magnificent work

 

  • Gold 3D Printer

  • 3d printed jewellery  wax

  • 3d printing jewellery moulds

  • 3D Printed Jewellery for the Fashion Forward."

 

3D Printing in Fashion World & Jewellery Industry | Advances in 3D Printing & Modelling | Amsterdam | Netherlands

3D Printing works much ahead than the existing designs. The décors’ of your dreams from vases to tall door’s. Everything at this designate complexities is now achievable using 3D Printing. This 3D printer delivers metal printed components with high-quality material properties and, compared to industry standards, low-surface roughness values, fine features and no residual stresses. New techniques and innovation are coming up with more aesthetical, durable decors and crafts with the invention in 3D Printing there comes new acrostic to win new aesthetic culture to craft more aesthetical decors using different pursuits.

  • 3D Technology in Fine Art and Craft
  • Fusion of 3D Printing and Traditional Craftsmanship
  • 3D Printing - Hobbyists & Crafts
  • 3d printing community projects
  • thingiverse 3d printer
  • bio-inspired ceramics composites

 

3D Printing in Ceramics “3D Craft” & Home Decor | Advances in 3D Printing And Modelling | Amsterdam | Netherlands

 

Upcoming amazing technology will help to provide us with a cleaner, greener way out. 3D printed parts are proving to have considerable advantages over conventional manufacturing processes. Since there’s little waste in 3D printing, there’s no excess cutting, drilling and milling. Less refining and assembly also means a reduction in storage before sale and distribution. This is yet another area that reduces the overuse of resources on a mass production scale. Numerous negative impacts like fumes, toxic by-products, excess energy requirements etc has been intervened in 3D printing. Moreover it’s the hope of innovators and scientists to correct all these current problems with future 3D technology. Imagine a world where eco-friendly 3D printed parts produced all we could ever need in a less sophisticated manner and thereby minimal impact on our planet and everything that is a part of it. So it still not a clear picture. Let us find together at the Congress in order to get some more clues to achieve it.

 

  • Global  picture in which 3D Printing fits in
  •  Negative impact of 3D Printing technology
  • Widespread earth-friendly 3D printing materials to look out for in the future
  • Role of 3D Printing in saving the environment

 

Impact & Assessment on Environment using  3D Printing | 3D Printing Meetings 2019 | 3D Printing Expo | Advances in 3D Printing & Modelling |Europe | Netherlands | Amsterdam 

 

As in early times, humans picked up bones and rocks to pound, cut and kill, technology has been used to change the world and to alter the manner of our existence. 3D printers have many promising areas of potential future application. It may also be used to make future buildings. Demonstrating the potential, over in China an amazing company called WinSun Decoration Design Engineering has already 3D printed a number of houses.3D printers also to create replacement organs, and even to directly repair the human body in situ. This is known as bioprinting and is an area of rapid development also. In some respects, the market for personal 3D printing is now growing very rapidly, with over a million personal 3D printers likely to be sold annually by 2020. Here come some Future Discussion Topics.

  • Metal Printing Will Become More Affordable
  • Expect More Vertical Applications Of 3d-Printed Manufacturing
  • Additive Manufacturers Will Demand New Design Tools
  • Look For More Materials
  • Expect Even More Mass Customization

Future Technologies and Planning in 3D Printing | Advances in 3D Printing & Modelling | Amsterdam | Netherlands

What should you do when you are trying to run a 3D print and it just doesn't come out right or the way you desire the output to be? Undoubtedly, you'll have faced a situation where your prints come out skewed and irregular, with a dull or rough surface finish, with blobs or with plenty of stringing. You’ll know if your printer is under-extruding as you’ll see missing layers, very thin layers, or layers that have random dots and holes in them. Experienced 3D makers, they’d all experienced the frustration with their printers malfunctioning and projects going to waste.  Some of the challenges are listed here:

  • Output/Quality Problems with 3D Printing.

  • The Process Is Unreliable. Too Much 3D Printer Troubleshooting

  • The Workflow.

  • The Target: It’s wrong.

  • The Market: It’s Prematurely Mature.

Challenges and Fixing Problems in 3D Printing | Advances in 3D Printing & Modelling | Amsterdam | Netherlands

 

At the B2C space, customers can see this most clearly through improved products and services. However, in the B2B market – where it’s often services and systems rather than products. Business to business to consumer (B2B2C) is an e-commerce model that combines business to business (B2B) and business to consumer (B2C) for a complete product or service transaction. It creates mutually beneficial service and product delivery channels. Collaboration to drive advancement is the innovative way forward for both established organizations and developing firms to bring new products and services to market. Partnering & Collaboration to drive innovation is the smart way forward for both established organizations and up-and-coming industries to bring fresh products and services to market from all corners. 

  • Extending Co-Creations through the Value Chain
  • Amplifying Results for all parties.
  • Enterprise Co-Creation for the B2B Network
  • Making Co-Creation Operation with Engagement Platforms

B2B and B2C Partnering and Collaborations | Advances in 3D Printing & Modelling | Amsterdam | Netherlands